If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2=45
We move all terms to the left:
10y^2-(45)=0
a = 10; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·10·(-45)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*10}=\frac{0-30\sqrt{2}}{20} =-\frac{30\sqrt{2}}{20} =-\frac{3\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*10}=\frac{0+30\sqrt{2}}{20} =\frac{30\sqrt{2}}{20} =\frac{3\sqrt{2}}{2} $
| .75+2x=3x-1.4 | | 10x-(5x+4/3)=7 | | (2+x)5=30 | | 4x=5=-94-7x | | 10x-5x+4/3=7 | | 2/8n=-1/4 | | 6x-8=3(2x-2) | | -4x-5=×+10 | | 10×-5x+4/3=7 | | x+x+3=2x+2x+6 | | 8^x=4^2x+1 | | 5^x-1+5^x-2=30 | | 7x-15=4x+27 | | 7x-12=27+10x | | 3p-2=5×(8+p) | | x+x2/3=45 | | 3p-2=5(8+p) | | 6x+25=(4x+55) | | 4+35x=(21x+28) | | -4+3x=(-16+12x) | | 5x+8=(-100-7x) | | 92-2x=(12-10x) | | 4x+9=(-61-6x) | | n(n-4)+n(n+8)=n(n-13)+n(n-13)+n(n+1)+16 | | 6+11x=(-4+x) | | 8n-22+6n=-2+38n-5 | | 6x-3=(13x-73) | | (k+1/2)^=9/16 | | 2x+32=(9x-45) | | 8n-22+6n=-2+( | | 5x=(3x+14) | | 3x-3=(x+3) |